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Abstract

This document describes the definitions and theories behind Hypertensor V2.0,
including how it improves V1.0, new features, and different aspects of the imple-

mentation.
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1 Introduction

Hypertensor marks a shift from an MVP (minimal viable product) to a full-fledged Al
economy.

The following paper describes the key features that differentiate the MVP from the
current form of an Al economy, which is split between the technology of the blockchain
and the technology of the subnets, precisely:

2 Blockchain

2.1 Introduction

The blockchain is the Substrate-based base layer of the modular architecture. It makes
it easy for anyone to launch a decentralized Al model within a subnet and begin re-
ceiving subnet validator incentives.

2.2 Nominated Proof of Stake (NPoS)

Hypertensor uses NPoS (Nominated Proof-of-Stake) as its mechanism for selecting the
validator set. It is designed with the roles of validators and nominators, to maximize
chain security. Actors who are interested in maintaining the network can run a valida-
tor node.

Validators assume the role of producing new blocks, validating blocks, and guaranteeing
finality. Nominators can choose to back select validators with their stake. Nominators
can approve candidates that they trust and back them with their tokens.

The following is a high-level overview with some technical explanations:

2.2.1 Hybrid Consensus

Hypertensor uses what is known as hybrid consensus. Hybrid consensus splits up the
finality gadget (GRANDPA) [Foundation, n.d.] [Alistair Stewart, Eleftherios Kokoris-
Kogia, 2020] from the block production mechanism (BABE) [Handan Kilinc Alper,
2020].

This is a way of getting the benefits of probabilistic finality (the ability to always pro-
duce new blocks) and provable finality (having a universal agreement on the canonical
chain with no chance for reversion) in Hypertensor. It also avoids the corresponding
drawbacks of each mechanism (the chance of unknowingly following the wrong fork in
probabilistic finality, and a chance for ”stalling” - not being able to produce new blocks
- in provable finality). By combining these two mechanisms, Hypertensor allows for
blocks to be rapidly produced, and the slower finality mechanism to run in a separate
process to finalize blocks without risking slower transaction processing or stalling.



2.2.2 Block Production: BABE

BABE (Blind Assignment for Blockchain Extension) is the block production mecha-
nism that runs between the validator nodes and determines the authors of new blocks.
BABE is comparable as an algorithm to Ouroboros Praos, with some key differences in
chain selection rule and slot time adjustments. BABE assigns block production slots to
validators according to stake and using the Hypertensor randomness cycle. The chain’s
runtime is required to provide the BABE authority list and randomness to the host via
a consensus message in the header of the first block of each epoch.

BABE execution happens in sequential non-overlapping phases known as epochs. Each
epoch is divided into a predefined number of slots. All slots in each epoch are sequen-
tially indexed starting from 0 (slot number). At the beginning of each epoch, the BABE
node needs to run the Block-Production-Lottery algorithm to find out in which slots it
should produce a block and gossip to the other block producers.

Validators participate in a lottery for every slot, which will inform whether or not
they are the block producer candidate for that slot. Slots are discrete units of time
of approximately 6 seconds in length. Because the mechanism of allocating slots to
validators is based on a randomized design, multiple validators could be candidates for
the same slot. Other times, a slot could be empty, resulting in inconsistent block time.

Multiple Validators per Slot When multiple validators are block producer candi-
dates in a given slot, all will produce a block and broadcast it to the network. At that
point, it’s a race. The validator whose block reaches most of the network first wins.
Depending on network topology and latency, both chains will continue to build in some
capacity until finalization kicks in and amputates a fork.

No Validators in Slot When no validators have rolled low enough in the randomness
lottery to qualify for block production, a slot can remain seemingly blockless. We avoid
this by running a secondary, round-robin style validator selection algorithm in the
background. The validators selected to produce blocks through this algorithm always
produce blocks. Still, these secondary blocks are ignored if the same slot also produces
a primary block from a VRF-selected validator. Thus, a slot can have either a primary
or a secondary block, and no slots are ever skipped.

BABE

In BABE, we have sequential non-overlapping epochs (ej, ey, ... ), each of which con-
sists of a number of sequential block production slots (e; = {sl}, s}, ..., sli}) up to some
bound ¢. At the beginning of an epoch, we randomly assign each block production slot
to a ”slot leader”, often one party or no party, but sometimes more than one party.
These assignments are initially secrets known only to the assigned slot leader them-
selves, but eventually, they publicly claim their slots when they produce a new block
in one.

Each party Pj has a session key containing at least two types of secret/public key pair:
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e A verifiable random function (VRF) key sk, pk}, and,
e A signing key for blocks sk, pk;

We favor VRF keys being relatively long-lived because new VRF keys cannot be used
until well after creation and submission to the chain. Yet, parties should update their
associated signing keys from time to time to provide forward security against attackers
who might exploit from creating slashable equivocations.

Each party Pj keeps a local set of blockchains C; = {C, s, ...,C;}. All these chains
have some common blocks, at least the genesis block, up until some height.

We assume that each party has a local buffer that contains a set of transactions to be
added to blocks. All transactions in a block are validated with a transaction validation
function before entering this buffer.

In BABE, we would like to ensure that each validator has the same chance to be selected

as a block producer on a slot. Therefore, we define the probability that a validator is
selected for a slot as

1
p=o¢c(l) =1—(1—-c)n

Where 0 < ¢ <1 is a constant parameter and n is the number of validators.

In order to achieve the equality of validators in BABE, we define a threshold parameter
as in [2] for the slot assignment:

T = 2£Urf¢c(9>

Where 0,7 f is the length of the VRF’s first output (randomness value).
BABE consists of three phases:

1st: Genesis Phase In this phase, we manually produce the unique genesis block.

The genesis block contains a random number rl for use during the first two epochs for

slot leader assignments. Session public keys of initial validators are (pk}, pk3, ..., pk2), (pk3, pks, ...

2nd: Normal Phase We assume that each validator divided their timeline into slots
after receiving the genesis block. They determine the current slot number according to
their timeline. Similarly, when a new validator joins to BABE after the genesis block,
this validator divides his timeline into slots.

S

, Dk,

)



In normal operation, each slot leader should produce and publish a block. All other
nodes attempt to update their chain by extending with new valid blocks they observe.

We suppose each validator V; has a set of chains C; in the current slot sl;, in the epoch
e and has a best chain C' selected in sl — 1, and the length of C'is £ — 1.

Each validator V; produces a block if he is the slot leader of si;. If the first output
(d) of the following VRF computation is less than the threshold 7 then he is the slot
leader.

’U’I“fsk;g (rum|sli) — (d, )

If P; is the slot leader, P; generates a block to be added on C' in slot sl;. The block B,
should at least contain the slot number sl, the hash of the previous block H,_1, the
VRF output d, m, transactions ¢z, and the signature o = Signs (sly||Hp-1||d]|7|[tx)).
P; updates C' with the new block and sends By.

In any case (being a slot leader or not being a slot leader), when V; receives a block B =
(sl, H,d', 7', tx, o) produced by validator V;, it validates a block within Validate(B).
Validate(B) must at least check the followings in order to validate the block.

o If Verifyp: (0') — valid (signature verification),

e if the validator is the slot leader: Verifyps (7', 7 ||sl — valid) and d' < 7 (veri-
fication with the VRF’s verification algorithm),

e if there exists a chain C” with the header H,

e If the transactions in B are valid.

If the validation process goes well, V; adds B to C’. Otherwise, it ignores the block,

At the end of the slot, P; decides the best chain with the chain selection rule.

3rd: Epoch Update Starting from the first slot, in every R slots, the new epoch
starts.

Before starting a new epoch in e,,, validators should obtain the new epoch randomness
and active validators set for the new epoch.

The validator set for the epoch em has to be included in the relay chain until the end of
the last block of the epoch e,,_3 so that they are able to actively participate in the block
production in the epoch e,,. So, a new validator can actively join the block production
at the earliest two epochs later after being included in to relay chain.



Fresh randomness for the epoch e, is computed as in Ouroboros Praos [2]: Concatenate
all the VRF outputs of blocks in the epoch e, 5 (let us assume the concatenation is
p). Then the randomness in epoch e,,:

T'm = H(Tm—2||m| |IO)

The reason for including a validator after two epochs later is to make sure that the
VRF keys of the new validators are added to the chain before the randomness of the
epoch that they are going to be active is revealed.

For a more detailed explanation of BABE, see BABE references.

2.2.3 Finality Gadget: GRANDPA

GRANDPA provides block finalization. It has a known weighted authority set like
BABE. However, GRANDPA does not author blocks. It just listens to gossip about
blocks that have been produced by block authoring nodes. GRANDPA validators vote
on chains, not blocks. GRANDPA validators vote on a block that they consider best
and their votes are applied transitively to all previous blocks. After two-thirds of the
GRANDPA authorities have voted for a particular block, it is considered final.

It works in a partially synchronous network model as long as 2/3 of nodes are honest
and can cope with 1/5 Byzantine nodes in an asynchronous setting.

A notable distinction is that GRANDPA reaches agreements on chains rather than
blocks, greatly speeding up the finalization process, even after long-term network par-
titioning or other networking failures.

In other words, as soon as more than 2/3 of validators attest to a chain containing a
particular block, all blocks leading up to that one are finalized at once.

Probabilistic vs. Provable Finality A pure Nakamoto consensus blockchain that
runs PoW is only able to achieve the notion of probabilistic finality and reach eventual
consensus. Probabilistic finality means that under some assumptions about the network
and participants if we see a few blocks building on a given block, we can estimate the
probability that it is final. Eventual consensus means that at some point in the future,
all nodes will agree on the truthfulness of one set of data. This eventual consensus
may take a long time, and will not be able to determine how long it will take ahead
of time. However, finality gadgets such as GRANDPA (GHOST-based Recursive AN-
cestor Deriving Prefix Agreement) or Ethereum’s Casper FFG (the Friendly Finality
Gadget) are designed to give stronger and quicker guarantees on the finality of blocks
- specifically, that they can never be reverted after some process of Byzantine agree-
ments has taken place. The notion of irreversible consensus is known as provable finality.

For a more detailed explanation of GRANDPA, see GRANDPA references.



2.3 Subnet Democracy

Each subnet must be voted in by undergoing a democratic process via a proposal mech-
anism. Hypertensor is building an Al economy, it needs to be a democratic economy.
Humanity needs a say in what Al does to have full control of how Al operates so it
never gets out of control.

2.3.1 Democratic Subnets

This facilitates the decentralized decision-making process by allowing users to vote on a
subnet’s induction or removal into or from the overall network. Each new subnet must
undergo a democratic governance vote requiring a quorum and consensus. Subnets can
be voted in and be voted out under certain circumstances.

Proposal Types:

e Subnet Activation

e Subnet Deactivation

Configuration:

e Quorum: 10,000 TENSOR,
e Consensus: >50%,
¢ Maximum Activation Proposals: 1,
— The maximum live amount of proposals for subnet activation.
¢ Maximum Deactivation Proposals: 32,
— The maximum live amount of proposals for subnet deactivation.
e Minimum Proposal Stake: 100 TENSOR,

— The amount a proposer must stake towards a proposal.

— The amount is the minimum versus the subnet initialization cost. If the
initialization cost is less than the minimum proposal stake, the proposer must
stake the minimum proposal stake and will have the difference returned on
completion of the proposal.

e Voting Period: 9 days,
— The length of a proposal voting period.
e Enactment Period: 21 days,
— The length after a proposal has been completed to execute the proposal.
e Verify Period: 3 days,
— The length after an activation proposal each subnet node must verify itself.

Query the blockchain for the most up-to-date subnet democracy configuration.



Subnet Activation The proposer must stake the minimum proposal stake or the
subnet initialization cost for the length of the proposal, whichever is most, the proposal
must have the minimum required subnet nodes to initiate the proposal, and each subnet
node in that subnet must have the minimum amount of tokens required to stake as a
subnet node in their account.

Activation requires submitting the proposal with the required parameters including
the subnet model path from HuggingFace or IPFS, or any URL that can be used to
download the model, and the memory requirements to host the entire subnet layer (seen
in section 2.5).

Subnet Deactivation Subnets can be proposed to be deactivated.

Subnet Node Verification Each activation proposal requires submitting parameters
including each subnet node that is dedicated to validating the subnet once successfully
voted in. Each subnet node entered with the activation proposal must sign the pro-
posal to ensure the proposer entered the correct accounts and isn’t taking advantage of
accounts with enough stake to have their proposal transaction succeed.

Casting Votes Once a proposal is initiated, subnet nodes and accounts can begin
voting Yay, Nay, or Abstain by staking TENSOR to the proposal itself. Each voter
must be staked under the following conditions:

Vote Eligibility:
e Blockchain Validator
e Blockchain Delegate Staker
e Subnet Validator
e Subnet Delegate Staker

A user’s ability to vote is based on the sum of all staking balances on each unique
proposal. For example, if multiple proposals exist and a user has 1000 tokens staked
as the sum of all staking options, they can use 1000 staked TENSOR to cast a vote on
each unique proposal.

Executing By the end of the proposal’s designated voting period, the required quo-
rum and consensus must be reached to activate or deactivate the subnet. Otherwise,
the proposal is defeated and the subnet is not activated or deactivated.

The proposal must be executed within the enactment period or it will become expired.
Once the proposal is complete, it can be succeeded, defeated, expired, or canceled. In

each case, the proposer receives the subnet initialization cost back, and all voters can
manually unstake.



If the proposal succeeds by reaching the quorum and a consensus of j50%, then, the sub-
net is initialized or removed from the network. Once the execute function is called, the
subnet is activated into the Network Pallet and the proposers’ initial stake towards the
proposal is unreserved and sent to the Network pallet and distributed to all previously
initialized subnets on the epoch following.

Cancelling A proposal can be canceled by the proposer if the voting period has not
ended, or by anyone, if the verify period has passed and j100% of the subnet nodes still
need to verify themselves.

2.4 Subnet Consensus

Counsensus is formed via validation and attestation of subnet nodes. Each subnet un-
dergoes its own consensus separately.

2.4.1 Validation

One subnet validator, per subnet, is randomly selected in each epoch slot to be the
epochs proposer. These validators are chosen by blockchain validators that are ran-
domly chosen to validate the block at the start of the epoch. These chosen subnet
validators submit consensus data of each subnet node in the respective subnet with
details about their computational contributions towards the subnet in that epoch as a
score. This proposal data then undergoes attestation.

2.4.2 Attestation

Attestation is the process through which validators confirm the accuracy of the blockchain’s
current state by voting and reaching a consensus, thereby ensuring the security and in-
tegrity of the chain. The purpose of the attestation is to vote in favor of the validator’s
view of the chain.

Once the validator submits its proposal to the blockchain, each subnet node can attest
that data or not attest that data. Attestation must reach a minimum of 66% in order
to achieve a consensus.

If consensus is reached for a subnet, the subnet validator, the attesting subnet nodes,

and data-included subnet nodes are rewarded. If consensus isn’t reached for a subnet,
the validator is slashed, its penalty score incremented, and the subnet’s epoch is skipped.

Subnet Validator Rewards

rewards+ = base_rewards_per_epoch X atestations/total validators

Subnet Validator Penalties

slash = ef fective_balancex slash_percentagexattestation_percentage > max_slash — max_slash
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The slash_percentage is

slash_percentage = 1.0 — attestation_percentage

2.5 Rewards

All rewards are based on the memory requirements to validate a subnet. For example, a
subnet utilizing a 400 billion parameters model will have higher compute requirements,
thus requiring more nodes, and will generate greater rewards overall towards the subnet
than a 100 million parameter model that requires fewer nodes to validate.

While a subnet with higher memory requirements will generate greater rewards and
may incentivize users to create subnets with higher memory requirements, the higher
the memory requirements result in a higher minimum nodes requirement, thus, the
more TENSOR must be staked on-chain towards that subnet. If the minimum required
subnet nodes are not reached during any epoch, consensus will not be accepted, rewards
will not be generated, and the subnet will increment its penalty score.

Future Works Future implementations can include different categories including cat-
egories and subcategories of inference, training, model types, datasets, etc. to ensure
the fine-tuning and accuracy of rewards and inflation.

2.5.1 Calculating Base Rewards

Subnet nodes and validators receive rewards when they are in consensus and the subnet
is healthy. The value of the rewards in each epoch is calculated from the based_reward.

Each subnet’s rewards mechanism is based on the default lowest expected memory per
GPU (currently 16,000 MB, or 16 GiB). Each subnet must initialize with parameters
including the required memory to validate the model.

The rewards for a subnet are based on the target nodes required, calculated from the
subnet’s memory requirements during the initialization and voting period. The target
nodes are calculated from the minimum default memory per validator multiplied by the
target_subnet_nodes_multiplier.

Minimum required subnet nodes:

base_min_nodes

min_nodes =
subnet_memory

base_subnet_nodes , if base_min_nodes
min_subnet_nodes , otherwise

Target Subnet Nodes:

target_subnet_nodes = min_subnet_nodesxtarget_subnet_nodes_multiplier+min_subnet_nodes

11



Subnet Rewards:

subnet_rewards = reward_per_mb x subnet_mb

Subnet Node Reward:

subnet_node_reward = subnet_node_score/subnet_scores_sum x subnet_rewards

2.6 Subnet Delegate Staking

Users can delegate stake to subnets of their choosings in return for a portion of the
subnets rewards. Users can participate in staking without the need to run their validator
node. By becoming a subnet delegate staker, users can participate in governance and
subnet voting without needing technical knowledge to run a validator node or subnet
node.

Subnet Delegate Stake Rewards:

subnet_delegate_stake_rewards = subnet_rewardsx subnet_delegate_stake_rewards_percentage

2.6.1 Future Works

Subnet delegate staking can be used as a measurement for automating the removal of
subnets that do not garner interest from the greater community, amongst other similar
concepts.

2.7 Sequence Framework

Each subnet must use the sequence framework powered by blockchain validators. This
sequence includes multiple steps to validate subnets, subnet nodes, and prevent attack
vectors [Hypertensor, 2024]. This includes an idle state to allow for subnets to perform
unique validation mechanisms such as Pol (proof of inference), PoS (proof of stake),
PoT (proof of training), etc., an inclusion state for inducting new subnet nodes into
the subnets consensus data, a submission state for requiring subnet nodes to begin val-
idating and attesting consensus proposals and data, and an accountant state for subnet
nodes to be enabled to create dishonesty proposals.

Each subnet can also use the provided signature validation mechanism to ensure each
subnet node is staked on-chain.

The following is a framework for the blockchain and the subnets. Each step is multiple
epochs and the blockchain validators update each subnet node sequence state on each
new epoch.

2.7.1 Sequence

To be included as an inference-eligible node, each subnet node must stake the minimum

required balance, and undergo a validation sequence, each determining its trust level.
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Read more about why there is a sequence in the previous whitepaper. Each sequence
step is multiple epochs in length.

1. Idle
2. Inclusion
3. Submission

4. Accountant

Idle New nodes staking to the blockchain and entering the subnets DHT are inducted
in an idle state from the time they registered on-chain. In this state, the subnet node
can do nothing but wait for other nodes to add them to their routing tables [Network
Working Group, F. Baker, and Cisco Systems, 1995] [Network Working Group, F.
Baker, P. Savola, and Cisco Systems, 2004] [Network Working Group, L. Yang, Intel
Corp., R. Dantu, Univ. of North Texas, T. Anderson,Intel Corp., R. Gopal, Nokia,
2004] [Maymounkov and Maziéres, n.d.], and for blockchain validators to update their
sequence step. During this step, they are not included in the consensus and do not
receive rewards.

During the idle stage, subnets verify nodes by the consensus method or methods the
subnet provides, such as proof of stake (PoS), proof of inference (Pol), or others, as
explained in the Subnets section (seen in section 3).

Inclusion Once all nodes have validated the new node and added them to their rout-
ing tables and the required amount of epochs have gone by to include them in consensus,
the subnet nodes performing validation will now include the new subnet node in con-
sensus data to induct them into the blockchain. In this stage, the subnet node does not
receive rewards.

The inclusion stage requires that each inclusion-eligible subnet node be included in con-
sensus or will be removed if they surpass the MaxzSequentialAbsentSubnetNode, which
is the maximum count of sequential epochs any one subnet node can be out of consensus.

The length of epochs of the inclusion step is always equal to or greater than the MazSe-
quential AbsentSubnetNode. This ensures they are never able to validate or attest to
consensus if they have not been inducted via a consensus.

Submission At this stage of the sequence, they have been inducted into the blockchain
via a consensus. The submission stage enables the node to begin submitting consensus
data, attesting consensus data, and receiving rewards. Each node at this level is re-
quired to submit consensus data if they are chosen to be on that epoch, as well as each
submission-eligible node must attest valid consensus data on each epoch.

Accountant As an Accountant, subnet nodes are enabled to initiate proposals to
remove dishonest nodes (seen in section 2.8).
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Conclusion This sequence is dictated by blockchain validators with each subnet node
automatically pushed up in the sequence based on the epochs in each step. It’s up
to each subnet to verify the legitimacy of each subnet node and ensure only valid
subnet nodes are included in the consensus. Each subnet must have its own validation
mechanism for including subnet nodes in consensus data.

2.8 Fault Proofs

This mechanism acts as an immutable consensus state subnets can use to form a con-
sensus on the honesty of its nodes.

2.8.1 Framework

This is designed for decentralized peer-to-peer subnets to validate and form a consen-
sus on subnets’ unique data to the blockchain. To ensure the security, integrity, and
proper functioning of a subnet, each one must be able to remove validators others deem
dishonest via consensus.

2.8.2 Proposals

Proposals are the core of the validation framework and are responsible for the forming
of consensus to remove dishonest subnet nodes that can be performed by accountant-
eligible subnet nodes.

The proposal framework is similar to fault proofs [Optimism, 2024] [ethereum-optimism,
n.d.] used in Optimism, an Ethereum optimistic-rollup. The mechanism is similar
whereby the plaintiff (the disputer deeming the defendant dishonest) and the defendant
(the node deemed dishonest) must each stake as a monetary balance to incentivize hon-
esty that each node can lose if found guilty. The plaintiff must submit a proposal with
data proving the validity of their claim for others to attest to.

When a plaintiff proposes another subnet node as dishonest, the defendant must dispute
the claim by staking or be removed. Once the defendant challenges the dispute by
staking to the proposal, the proposal is activated for others to validate the submitted
proposal data, vote, and form a consensus.

2.8.3 Voting

Once a defendant disputes the claim that they are dishonest, other accountant-eligible
nodes can begin validating the proposal data. This validation is done off-chain within
the subnet and each subnet has its own unique validation system and can have mul-
tiple of them. For example, a subnet specializing in inference may have a Pol (proof
of inference) validation mechanism to validate the data. Once the subnet node has
completed vetting the data, the subnet node can vote yay if they are in agreeance with
the plaintiff, or nay if they are in agreeance with the defendant.
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2.8.4 Completing

To complete the proposal and have either the defendant removed if the plaintiff wins,
or do nothing if the defendant wins, a quorum and consensus must be met. Otherwise,
nothing happens and the bids are returned to both the plaintiff and the defendant as
the quorum or a consensus was unable to be reached.

2.8.5 Distribution

If the quorum is met and a consensus is reached, the winner (plaintiff or defendant)
receives their initial bid back to them, and the loser will lose their bid to distribution.
The subnet nodes that voted and are in consensus will be equally distributed the loser’s
bid. In cases where the distribution isn’t equally divisible, the remaining dust is settled
to the winner.

2.8.6 66% Attack

To control the voting power of a proposal a subnet node must own §66% of the total
stake balance within the subnet the proposal is for. Each proposal to remove a subnet
node requires a consensus threshold of 66%. A user can prevent other nodes they own
from being removed by owning ;33% of the subnet stake balance not including the one
being proposed to be removed. A subnet node cannot vote on a proposal if they are
the node being proposed to be removed. By not allowing both the proposer and the
defendant to vote on the proposal, this further prevents the 66% threshold from being
reached.

3 Subnets

This is an introductory explanation of the subnet-LLM repository. The blockchain itself
is a modular artificial intelligence framework for distributed processing, peer-to-peer,
software. This allows the blockchain to adapt to multiple Al categories such as im-
age diffusion, AI Agents, Convolutional Neural Networks, Recurrent Neural Networks,
Federated Training, etc.

3.1 Introduction

The core of the subnets-llm repository is a combination of Hivemind [team, 2020]
[Ryabinin and Gusev, 2020], Petals [Borzunov et al., 2023b] [Borzunov et al., 2023a],
LibP2P [libp2p, n.d.], PyTorch [pytorch, n.d.], and other Python libraries for artificial
intelligence, encryption, decentralization, etc. with further adaptions for scaling de-
centralization. The innovations and modifications explained in this paper in both the
blockchain and subnets sections include Pol (proof of inference), validation, consensus,
server scoring, rewards, PoS (proof of stake), sequencing, etc.

Subnets are a global network for running decentralized Al
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3.1.1 Future Works

Due to the modular architecture and flexibility of Hypertensor, it’s not restricted to
only LLMs (large language models). While it may start with LLM subnets, the system
is capable of integrating new subnets for different types of tasks. For example, it
could incorporate subnets for computer vision models, reinforcement learning agents,
image-diffusion, or even graph neural networks (GNNs) for specialized applications or
autonomous systems.

Cross-subnet collaboration is also a possible evolution. As Hypertensor evolves,
subnets can collaborate, forming a more powerful and interconnected Al system. For
example, an LLM subnet could interact with a vision subnet to interpret and describe
images, or with a reasoning subnet for decision-making tasks, unlocking new capabili-
ties and possibilities.

The possibilities of Hypertensor are limitless.

3.2 Decentralized Inference

When generating tokens, a client stores the model’s token embeddings (which typically
comprise a small fraction of the total parameter count and can fit in RAM in most mod-
ern laptops, servers, and workstations) locally and relies on servers to run Transformer
blocks. Each server holds several consecutive blocks, the number of which depends on
the server’s available GPU memory. Before each inference session, the client finds a
chain of servers that collectively hold all model layers. Once the chain is formed, the
client uses the local embedding layer to look up embedding vectors for prefix tokens,
then sends those vectors to servers and receives new representations. Once the client
obtains the outputs of the final block, it computes the next token probabilities and
repeats this process. While the session is active, servers store attention keys and values
from past client inputs and use them for subsequent inference steps. Clients also store
past inputs to each server so that if any server fails or goes offline, another one can
quickly take its place.

3.3 Client-side API

inference session iteratively takes inputs as PyTorch tensors runs them through all
Transformer blocks, and returns final representations as PyTorch tensors. Under the
hood, sessions form server chains, hold cache, and recover from server failures in a way
that is transparent to the user.

3.4 Server Load Balancing

We ensure that servers are distributed evenly among Transformer blocks. Formally,
servers maximize the total model throughput by choosing the blocks with the worst
throughput and eliminating potential bottlenecks. Each server periodically announces
its active blocks to a distributed hash table (Maymounkov and Mazieres, 2002). When
a new server joins, it uses this information to identify an interval of blocks that contains
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the most blocks with the worst throughput. This interval is always contiguous since
splitting it would harm the inference latency. Once the server has selected its layers,
it measures its own throughput (both network and compute) and announces it to the
distributed hash table. Since peers may leave or fail at any time, all nodes periodi-
cally check if launching a rebalancing procedure would significantly improve the overall
throughput. If this is the case, they switch layers until the throughput becomes near-
optimal. In particular, if all peers serving certain blocks suddenly leave the system,
this procedure quickly redistributes the remaining resources to close the emerged gaps.

3.5 Client-Side Routing

We want clients to be able to find a sequence of servers that run the model in the least
amount of time. During generation, clients process one or few tokens at a time; in
practice, the inference time is mostly sensitive to the network latency. Thus, clients
have to ping nearby servers to measure latency and then find the path with minimal
time via beam search. Conversely, during fine-tuning one needs to process a batch of
examples in parallel. Here, clients can split their batches between multiple servers using
the algorithm from Ryabinin et al. (2023). If a server fails during training or inference,
a client removes it from consideration and reruns routing to find a replacement. During
inference, the client sends all previous inputs to the replacement server, so that it has
the same attention keys and values.

3.6 Security

Servers may turn out to be faulty and return incorrect outputs instead of the actual
results of forward and backward passes. This may happen due to a malicious intent to
influence other people’s outputs or to earn a reward for serving layers without actually
performing the calculations.

Hypertensor addresses these issues with an economically motivated approach combined
with Pol (proof of inference) (seen in section 3.7), a penalization approach using a
fault-proof mechanism via Subnet Democracy (seen in section 2.3), a validation and
attestation framework (seen in section 2.4), and a PoS (proof of stake) consensus method
(seen in section 3.8).

3.7 Proof of Inference (Pol)

In decentralized and trustless environments, ensuring the integrity of Al inferences is
crucial, this can apply to training and other Al concepts. Without a mechanism like
Pol, it would be difficult to trust the predictions made by a network of nodes. Proof
of Inference thus provides a trust layer, allowing decentralized Al systems to operate
with accountability and reliability.

Proof of Inference provides a mechanism to verify that a node in a network has correctly

performed an inference or training task (e.g., a prediction or classification) using the
agreed-upon model. It ensures that nodes do not return incorrect results or try to cheat

17



the system.

Similar to Proof of Stake or Proof of Work, Pol involves validation steps where other
nodes or validators check the inference result. Pol validates the inference of the validat-
ing node and nodes are incentivized to provide accurate inferences and can be penalized
or rewarded based on their behavior.

3.7.1 Mechanism

This is the first generation and proof of concept for Pol in a Hypertensor subnet. This
is a high-level explanation.

On each epoch, blockchain validators choose one or multiple subnet validators using
VREF (verifiable random function) to become the Accountant(s) of the epoch. Accoun-
tants are required to upload validation data of the subnet.

Accountants run inference or training validation logic to verify the accuracy of other
nodes’ inferences or training and put the results through a fitness function [Fitness
function, n.d.] to ensure the accuracy of output tensors. A Tensor is a N-dimensional
Matrix.

Each Accountant will find the minimum range of transformer blocks to val-
idate:
rng = ([min..max] = min, min + 1..mazx — 1, max)

Once this range is calculated, the Accountant will run these transformer blocks indi-
vidually in a sequence and cache the results locally for future use, or use previously
cached results. An Accountant should cache multiple differing versions of a sequence
to use at a later date or run randomized versions to ensure other nodes cannot learn
the specific Accountant’s expected outputs ahead of time.

Caching the sequence decreases the post-accountant sequence computations for validat-
n—1
ing other nodes by ——.
n

Once the entire calculated range of blocks is cached, each subnet node will be validated
by the validating node (Accountant) on one or multiple transformer blocks they serve.
The subnet node is then injected into a new inference sequence alongside the cached
results. This data is then validated across each position from the sequence, checking
the absolute and relative tolerances, ensuring the maximum threshold constants are not
surpassed.

Validate tensor tolerances on each position:

[pvals, ..., pvals] = [|input—other < atol+rtolxother|, ..., |[input—other < atol+rtolxother|]

Validate validated positions:

valid — VTOL < vtol — [pvals_true, ..., pvals_truel

len(pvals)
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3.7.2 Data Submission

This data is then submitted to the blockchain for others to verify. The data can also
be used to submit a dishonesty proposal to have a dishonest node removed using a
fault-proof mechanism explained in Proposals (seen in section 2.8).

3.7.3 Conclusion

Each Accountant is using its own inference data to validate other nodes. Combined with
being validated and being a validator (Accountant), it is unexact to find a dishonest
Accountant and or node in the network.

3.8 Proof of Stake (PoS)

Each subnet node must stake a minimum required balance to the blockchain with its
PeerID and generate a signature with the encoded PeerID for other subnet nodes to
validate.

Each node will validate the signature and proof of stake before adding them to their
routing tables. This mechanism is always running in the background, therefor if a node
removes itself or by consensus, other nodes will remove the removed node from their
routing pools.

The signing algorithm used is the Ed25519 algorithm [paritytech, n.d.] [Internet Re-
search Task Force (IRTF), S. Josefsson, SJD AB, I. Liusvaara, n.d.]. Ed25519 is an
elliptic curve signing algorithm using EADSA and Curve25519 [T. Pornin, n.d.] [Na-
tional Institute of Standards and Technology, n.d.]. Ed25519 is chosen to sync with the
blockchain signing algorithm. This enables the subnet signatures to be verified on-chain
by other subnet nodes.

Ed25519 is the EADSA signature scheme using SHA-512 (SHA-2) and Curve25519(2]
where:

o ¢ = 225519,

E/F, is the twisted Edwards Curve

—a? +y? =1 — 121665/1216662%y>,

0 = 2252 4 277423177773723535358519377990883648493 and ¢ = 3

4
B is the unique point in E(F,) whose y coordinate is — and whose x coordinate

is positive. "positive” is defined in terms of bit-encoding:

— 7positive” coordinates are even coordinates (the least significant bit is cleared)

— "negative” coordinates are odd coordinates (the least significant bit is set)

H is SHA-512, with b = 256.
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The curve E/F) is birationally equivalent to the Montgomery curve known as Curve25519.

The equivalence is:

1
r = %\/—486664,y Y

u+1

The signatures can be validated on-chain and off-chain against blockchain storage data
to ensure the Substrate key pairs used to generate the signatures are valid [Substrate,
n.d.] [Parity, n.d.].

Validate On-chain

pub fn validate_signature (
data: &Vec<u8>,
signature: &T:: OffchainSignature ,
signer: &T:: Accountld ,
) —> DispatchResult {
if signature.verify(&+xdata, &signer) {
return Ok(())
}

let prefix = b’<Bytes>";

let suffix = b”"</Bytes>";

let mut wrapped: Vec<u8> = Vec:: with_capacity (data.len() +
prefix.len() + suffix.len());

wrapped . extend (prefix ) ;

wrapped . extend (data) ;

wrapped . extend (suffix);

ensure ! ( signature . verify (&xwrapped, &signer), Error::<T>::
WrongSignature) ;

Ok(())
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3.9 Server Scoring

Each subnet node is scored accurately based on its computation and validation of the
subnet. Subnet nodes are scored based on how many layers the subnet node is serving.
These scores are submitted during the validation on each epoch (seen in section 2.4).

To incentivize higher computing capabilities and disincentivize a hostile takeover, sub-
net nodes serving a greater proportion of layers compared to the sum of all layers
served will yield greater rewards. It is more profitable to run fewer nodes with higher
computing servers than to run more nodes with lower computing servers. This further
incentivizes a game theory for subnet nodes to compete for higher-performing servers
and can theoretically create a low deviation near the most optimal measurement of
computation, thus increasing subnet computation capabilities on a linear time horizon.

3.9.1 Scoring

The overall score for each subnet node is based on a percentage of computation in the
subnet as:

Score:
score = k X share X share + share

Where share is:
node_layers

layers_sum

The blockchain itself is agnostic to the scoring mechanism. The sum of scores isn’t
required to be 100% in sum (seen in section 2.5).

In peer-to-peer networks, there are direct peers and relay peers. In summary, relay peers
use a transport protocol to route traffic between two peers over a third-party “relay”
peer. Relay peers are unreliable compared to direct peers, therefor to incentivize subnet
nodes to become direct peers, relay peers’ scores are lowered by 33%. Subnets have the
ability to disallow relay peers.

Future Work For higher accuracy in scoring individual subnet nodes, a consensus
state integrated directly into each subnet can be developed to gather greater detail of
server information on data points such as throughput, memory contribution, availabil-
ity, inference, and more.

3.10 Censorship Resistant

Control and decision-making are distributed across a network of participants rather
than concentrating it on a single central authority. This structure makes it difficult for
any one entity to gain control over the entire network.
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3.11 Fault Tolerant

Subnets are inherently fault-tolerant because they distribute data, control, and opera-
tions across multiple nodes or participants, rather than relying on a single centralized
server or point of control. This design ensures that even if some components of the
system fail or are compromised, the overall system can continue functioning without
interruption. As long as all of the subnet Al model layers are being served by subnet
nodes, the subnet will continue to operate in a healthy state.

3.12 Permissionless

Anyone can join, participate, and contribute to the network without needing approval
from a central authority or intermediary. This contrasts with permissioned networks,
where participants must obtain explicit access or meet specific requirements to engage
with the system. As long as a subnet node is staked, it can join other subnet node
routing tables and begin running the subnet software.

3.13 Conclusion

This section introduces the first generation of the decentralized text-generation subnet
for Hypertensor. Using this repository, thousands of subnets can be deployed with the
thousands of open-sourced LLMs available by any platform participants.
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